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I. 	Introduction
 

The turbulent boundary layer at constant pressure has been the subject
 

of experimental and theoretical investigations for many years, and provides
 

a well documented flow for the assessment of experimental-techniques. These
 

investigations have shown that for the incompressible turbulent boundary layer,
 

the turbulent shearing stress can be measured directly or can be calculated
 

from 	the distribution of mean velocity with the aid of well-established simi­

"larity laws. For compressible flows, however, measurements of the Reynolds
 

stresses are rare, and interpretation of the results is difficult. Recent
 

measurements by Johnson and Rose (1973), Yanta and Lee (1974), and by Abbiss
 

(1976) have used laser-Doppler velocimetry techniques to make direct measure­

ments of the Reynolds stress in turbulent boundary layers with free-stream
 

Mach numbers in the range 1.5 to 3.0. However, a serious anomaly is exhibited
 

by these measurements in that the maximum value of -pu v occurs much further*
 

from the wall than is reasonable for flow at constant pressure. This anomaly
 

has been discussed by Sandborn (1974), who supports the conjecture by some of
 

the authors cited that density fluctuations may contribute substantially to
 

the turbulent stresses near the wall. This conjecture is in direct opposition
 

to the conclusion by Morkovin (1961) that effects of density fluctuations
 

should be small compared to effects of variations in mean density for Mach
 

numbers up to 4 or 5.
 

The purpose of the present experiments is to obtain redundant data over
 

a substantial range of Mach numbers (M = 0.1 to 2.2), in an effort to resolve
 

the anomaly in turbulent shearing stress. The low-speed experiments were
 

performed in the boundary layer on a flat plate model in the GALCIT Merrill
 

* 
Graduate Aeronautical Laboratories of the California Institute of Technology.
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wind 	tunnel at a free-stream Mach number M 0.1. The high-speed experi­e 

ments 	were performed in the ceiling boundary layer of the J.P.L.t 20-inch
 

wind 	tunnel at Mach -numbers "0.6 Me 2.2.
 

The flow was documented by conventional means using a Pitot tube,
 

which 	was traversed through the boundary layer, to measure the mean flow.
 

In addition, surface-friction measurements were made using both a floating­

element balance and a Preston tube. The mean-flow scaling suggested by
 

Van Driest (1955) was applied to the data, to test the adequacy of a single
 

similarity formulation for both compressible and incompressible flow. The
 

shearing stress was computed from the mean flow as part of the analysis.
 

The details of these experiments have been discussed in Part I of this
 

report 	by Collins, Coles and Hicks (1978).
 

In the present report, the instrumentation, data acquisition and
 

analysis for laser-Doppler velocity measurements in the same flows are
 

,2 ,2 -r-7
 
and the Reynolds stress -pu v
described. Measurements of U, v, u , v 

were made over the full Mach number range. These measurements are discussed 

and compared to the results for the mean flow presented in Part I of this 

work. 

II. 	 Measurement Considerations at High Speeds
 

The use of laser-Doppler velocimetry techniques in high-speed flows
 

unavoidably results in very high frequency signals. Figure 1 is a plot of
 

the Doppler frequency
 

vD = 2 	sinO/2 u (1) 

tJet Propulsion Laboratory
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as a function of the flow velodity uI with the beam separation angle 6
 

as a paiameter. For these computations, the wavelength has been assumed
 

to be X \0.5145 [±m, corresponding to an argon-ion laser.
 

A reduction in the beam separation angle 8, in order to achieve a
 

reduction in the signal frequency, results in a,reduction in the number
 

of fringes within the measurement ellipsoid, and a consequent reduction
 

in the measurement accuracy. The interesting beam pair produces a set of
 

virtual fringes whose spacing is given by
 

x

S = 2 sin/2 "(2)
 

Because the (TEMHo Gaussian beam radius at the focus is .givenby
 

= (3) 

where R is the beam wavefront radius of curvature after the focusing lens 

(R - f = lens focal length), and w is tbe-l/e2 intensity envelope radius
 

at the focusing lens, the resulting number of fringes is then given by
 

(e.g., Dimotakis (1976))
 

w0 
N, = 4- tanI/2 (4) 

The number of fringes, Nf, is plotted in Figure 2 as a function of the
 

focal volume diameter 2 w with the angle 0 as a parameter for a wavelength
 

X = 0.5145 pm. As can be seen from Figure 2, spatial resolution consid­

erations place a lower bound on the angle e, presenting a criterion which
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conflicts with the requirement to keep the resulting Doppler frequencies
 

small. 

Other difficulties &ise if the Doppler frequencies are permitted
 

to be large. In addition to the problems of handling high frequencies
 

per se, the relative accuracy 6u/u with which the velocity of a single
 

particle can be measured is never less than the ratio of theprocessor
 

clock period, Tc , to the total flight time At that is used for the mea­

surement, i.e.,
 

6U T
 u TR (5) 
u At
 

By way of example, a processor with a clock frequency of 100 Mz
 

10-8 
= sec) can measure the velocity of a Mach - 2 particle in air 

(u - 530 m/see) in a 800 pm diameter focal volume to about , 0.7%. 

In addition to these considerations, which would limit the accuracy
 

even if the measurement environment was noise free, other factors become
 

important at high velocities by decreasing the signal-to-noise ratio of
 

a single reading. As the flow velocities become higher, smaller particles
 

are required to minimize problems of particle lag. This results in rapidly
 

decreasing scattering cross-sections (Born and Wolf (1975)) and consequent
 

signal intensities. In addition, as the velocity increases, the scattering
 

particle spends less time in the focal volume. As a result, even though
 

the number of scattered photons per second remains constant, proportional
 

to the scattering cross-section, fewer total photons are collected by the
 

detecting optics. An equivalent way of analyzing this problem is to consider
 

the noise bandwidth that must be utilized as the velocities, and resulting
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Doppler frequencies, increase. For a shot-noise limited detection process,
 

the noise power increases proportionally to the bandwidth that is accepted
 

by the processing electronics. Consequently, using the same particles,
 

the signal-to-noise ratio will decrease as the velocity increases.
 

III. Scattering Particles
 

A. Particle Lag
 

The extent to which the measurement of particle velocity represents
 

the fluid velocity is, of course, a separate issue. If the Lagrangian
 

fluctuation frequencies in the fluid are small compared to the reciprocal
 

of a characteristic particle response time, Tp, the particles are expected
 

to follow those fluctuations.
 

For small solid particles in gas flows, the equation of motion in
 

a Lagrangian frame can be approximated by
 

d u + L-U = L- u (6) 
dt p T p T fP P 

If the particle Reynolds number
 

Re -p--Xd , (7)p V p 

is small, and the flow can be described by the continuum equations, we
 

have the classical Stokes flow for a spherical particle for which the
 

drag coefficient is CD.= 24/Re The particle response time is then given
 

by
 

d2, 2,p 
p = 8 T(8) 

9 
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which is independent of the fluid density. A plot of the particle response 

time as a function of the particle diameter is given in Figure 3 for di.
 

butyl phthalate aerosol particles in air.
 

In order to estimate the fluctuatio frequencies to which a particle
 

will be subjected, it is useful to examine the Eulerian fluid motions in
 

the turbulent boundary layer. From the measurements of Klebanoff (1954)
 

in a boundary layer at constant pressure, and from the measurements of Perry
 

and Abell (1975; 1977) in pipes, the behavior of the Eulerian velocity
 

These results give spectra which can
fluctuation spectrum can be inferred. 


be described by
 

Suu(W'Y) nT f "1ub] (9) 

S(y ) u(y) 0Lu(y) 

for the wake region, and
 

Suu (W=Y) f1 [22tW (10)
 

u,-2 u(y) 1iu(y)
 
u (y) L
 

in the inner portion of the boundary layer, but outside the sublayer.
 

These spectra then result in expected frequencies given by
 

<m6= const. UY (11 

in the wake region, and
 

(Wiy = const. , (12) 
y 
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in the boundary layer interior. Consequently, ,particles above the sublayer
 

should .track the flow well, provided that
 

T u(y) < 1 (13)
 

y 

Ta r 1_P <1 [ Y ItJ( 4 
6 e u(Y)/Uei 

SubstitUting Equation (8) for Tp, we obtain an upper bound on the particle
 

diameter for the particles to track the flow,
 

ddp < pmax .8 m(15)<cd 4.83 ()
 
Me2
 

for di-butyl phthalate aerosol in air at 2500. 

A prediction of Equation (12) is that the turbulent wavenumbers k - w/u 

increase as the wall is approached, 

k const. (16)
 
y 

This result is confirmed qualitatively by the photograph in Figure 4 in
 

which the turbulent boundary layer on the surface of a water channel has
 

been made visible using a thick suspension of aluminum flakes which pref­

erentially align with the local strain field. The photograph was taken in
 

the GALCIT low-speed water channel by Brian Cantwell and is reproduced here
 

with his permission. The Reynolds number for this photograph, based on x,
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was 10 . The monotonic decrease in scale size as the wall is approached
 

is quite evident. These observations, and the results of Equation (12) are
 

consistent with the usual mixing-length hypotheses -made for the outer layer 

by Prandtl (1942), and are consistent with the hypothesis for the region
 

closer to the wall, but outside the viscous layer by von Karmin (1930).
 

In the interior of the boundary layer, the quantity in the brackets
 

in Equation (14)is bounded by the relation
 

V/6 > TUe'T - Ue1 
U(Y)/Ue 6+ 

where u is the friction velocity defined as
 

U'r=( k (18) 

+ + 

The ratio ue /6 has been shown by Coles (1968) to be a function of
 
Re. for incompressible flows with zero pressure gradient. The square root
 

of this quantity is plotted in Figure 5, for the range of Ree covered by 

the present measurements (8 X 103 < Re < 4 X 104). The data for this figure 

are taken from Table 4 of Collins, Coles and Hicks (1978). These data are 

compared in Figure 5 to a straight line fit given by the emperical relation 

4uI60 f(Re) 5.01 Re50 435 (19) 

In writing the lower bound in Equation (17), effects of compressibility 

have been ignored. Using the numerical result of Equations (15) and (19), we 

then have 

12
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4.83d < d (~ 
N( ±m) 

; far from the sublayer 
(0 

d <dd20 
' Pmnax 24.2, Ra0.435 ; near but outside the sublayer 

By way of example, a flow of M e . 1 requires particles less than 1.5 Jim e 

in diameter to track the fluctuations at y/6 - 0.1.
 

B. Techniques for Seeding the Flow
 

The particle generator for the present experiments used a Laskin
 

nozzle type construction to generate a poly-dispersed aerosol of di-butyl
 

phthalate. Particles greater than I wm in diameter were effectively
 

removed by an impact plate incorporated in the design. The resulting
 

particle size distribution, measured using both a cascade impactor and
 

a multi-channel particle analyzer, is shown in Figure 6. These results
 

indicate little contribution to the number density for sizes greater than
 

1 pm. While little is known about the distribution below 0.4 pm, it was
 

possible to ascertain that no particles with a diameter less than 0.ipm
 

were present.
 

Two different methods were used to introduce particles into the flow
 

depending on the flow facility that was used. For the high-speed measurements
 

(0.6 Me< 2.2), which were conducted in the JPL 20-inch wind tunnel, it was
 

necessary to seed the flow by introducing the particles into the settling
 

chamber between the last turbulence screen and the contraction section.
 

The particles were introduced through a tube which protruded 5 cm vertically
 

into the settling chamber from above. Holes were drilled into the tube along
 

13
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the stagnation line as well as the rear side at ± 300 with respect to the
 

flow vector. Using this technique, data rates in excess of 50,000 samples
 

-per second--were achieved-. Preston-tube measurements obtained with and
 

without particles indicate no detectable influence of the introduction of
 

particles on the surface friction and therefore, probably, on the mean flow.
 

For the low-speed measurements in the Merrill wind tunnel (Me- 0.1),
 

although some naturally occurring particles were present, the flow was seeded
 

-using the same aerosol generator in order to increase the data rate and to 

control the scattering particle size distribution. For these measurements 

the particles were injected through a tube spanning the test section located 

downstream of the boundary-layer plate, providing a uniform distribution of 

particles throughout the test section. In practice, the adjustment of the
 

rate at which particles were introduced proved difficult because the charac­

teristic time was of the order of several minutes for equilibrium with
 

particle losses. As a consequence, the particle number density changed
 

during the time required for a traverse through the boundary layer. Using
 

this seeding technique, data rates in excess of 2,000 samples/sec were
 

achieved at low speeds.
 

C. The Distribution of Particles
 

The particle number density was measured by counting the average fre­

quency of occurrence of valid data from the processing electronics. These
 

data are a measure of the mean particle flux (nu). Assuming that correlations
 

between the scattering particle number density and the streamwise velocity
 

are small, then
 

(n> = (nu) (21) 
(0 
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gives the mean value of the particle number density.
 

It is an unfortunate consequence of this measurement technique'that
 

the measured value of the particle flux (nu) decreases with the signal-to­

noise ratio of the experiment. The most common cause of a decrease in the
 

signal-to-noise ratio in the high-speed flow experiments has been attributed
 

to the random occurrence of oil filaments on the windows through which the
 

observations were made. Imperfections in the lucite windows in the Merrill
 

wind tunnel had a similar effect on the measured particle flux. In addition,
 

a more serious problem arose in the low-speed measurements, where the particle
 

flux was a slowly-varying function of time.
 

The resulting distribution of particle number density through the
 

boundary layer is shown in Figures 7, 8 and 9, in which the particle number 

density has been normalized by the local fluid density in order to account 

for the effects of compressibility. These data are further normalized by 

their maximum value in the boundary layer to eliminate the effects of differing 

injection rates. 

o The loss mechanisms of the scattering particles from the boundary layer
 

are important in understanding the resulting laser-Doppler observations. For
 

the high-speed experiments, the particle distribution was initially both
 

spatially and temporally approximately uniform over a restricted volume of
 

fluid in the settling chamber. The particle distribution in the outer portion
 

of the boundary layer is then determined by the diffusion of the passive
 

scalar into the outer flow. In addition to diffusion, the entrainment of
 

fluid into the boundary layer from the free stream by the mechanism of large­

scale eddy engulfment contributes substantially to the structure of the particle
 

number density profiles. Because the entrained fluid contains no particles,
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the measured distributions shown in Figures 7 and 8 exhibit a rapid decay
 

away from the wall, with the particle number density falling to zero in
 

the outer portion of the boundary layer. This- entrained fluid is under­

represented in the Doppler measurements because of the loss of statistical
 

weight.
 

As the wall is approached, the particle number density, normalized
 

by the local fluid density, decays more rapidly than the velocity as a result
 

of the loss of particles to the wall. This loss to the wall is evident from
 

the observation of an oil film on the test surface.
 

IV. Optics and Measurement Geometry
 

A. Position Measurement
 

The present experiments utilized the laser-Doppler velocimeter in the
 

single particle, dual forward-scatter mode. The instrument was mounted on
 

a vibration isolated, two-axis traverse which permitted surveys up to 75 cm
 

in the streamwise direction, and 20 cm in the direction normal to the test
 

plate. For measurements in the JPL 20-inch wind tunnel, the instrument was
 

mounted on top of the wind tunnel test section, as depicted in Figure Io.
 

For measurements in the GALCIT Merrill wind tunnel, the traverse was suspended
 

from the ceiling of the laboratory, and was not fixed relative to the test
 

plate.
 

The vertical position was sensed by means of a helipot mounted on the
 

vertical traverse and was repeatable to better than 0.005 cm. The origin for
 

the vertical position measurements was estimated by placing a razor blade of
 

known width normal to the test surface at the location of the focal volume.
 

The origin was then measured by determining the half intensity of transmission
 

as a function of position of one of the beams.
 

16
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In practice, establishing the origin, to within the accuracy warranted
 

by the data, by direct measurement proved difficult for a variety of reasons.
 

These inherent difficulties in measuring the position of the wall, relative
 

to the LDV traversing mechanism necessitated establishing the origin in y
 

using the data for the mean-velocity profile. This was accomplished'by a
 

least-squares fit of the mean-velocity data to the law of the wall and the
 

law of the wake in the form
 

+ i y+ + c + sin y , (22)'ttK 

where
 

+ (23) 

y = (y- yo+ uT- - , (24) 

= (y- y )-,- (25)
Y(= - Yo 26
 

and where y is the small offset of the position of the wall required to
 

establish the proper origin.
 

For this purpose, a least-squares analysis was performed to determine
 

the parameters UT., and y with * = 0.41 and c = 5.0 given, and 6 was 

computed as a constraint imposed by the local friction law,
 

+ I + 211-u =-Inx 6+c+ K (26)e 

The technique for this analysis is outlined in Part I of this work by
 

Collins, Coles and Hicks (1978) in conjunction with the mean-flow data
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presented there, The results of this procedure lead to corrections yo,
 

of the order of the focal volume diameter. In particular, the maximum
 

correction was 0.18 cm for one case of the high-speed data and 0.075 cm
 

for the low-speed flow measurements.
 

B. Transmitting Optics
 

The light source for this instrument was a Coherent Radiation Model
 

52B, 4-watt argon-ion laser. The laser was operated single line at
 

0.5145 pm and used an oven stabilized etalon to provide a single-mode beam.
 

It was mounted on the tubular support structure for the optics as shown in
 

Figure 10. This configuration ensures that the focal volume remains unchanged
 

as the assembly is traversed and also that the relative alignment between the
 

transmitting and receiving optics is preserved to within a few percent of the
 

focal-volume diameter.
 

The laser output beam was directed into the vertical support tube for
 

the transmitting optics by means of two separate mirrors in order to preserve
 

the proper polarization of the beam. The transmitting optics cell contains
 

a fixed mirror to direct the beam into the horizontal plane maintaining a
 

vertical polarization vector. The beam is then split into two beams of
 

unequal intensity by reflection from the front and rear surfaces of the first
 

of two multiply-coated beam splitters. The resulting beam pair is then trans­

mitted through a second multiply-coated beam splitter which divides the stronger
 

beam into two beams of equal intensity. This arrangement results in three
 

parallel beams of approximately equal intensity which form a right isosceles
 

triangle whose base is nominally parallel to the test surface. The three
 

output beams are then focused in the center of the tunnel by a 1.0 meter focal
 

length, antireflection coated lens, to a common focal volume - 0.8 mnn in
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diameter. The optical axis intercepts the test plate from below at an
 

angle of - 1:100 in order to permit measurement of the boundary layer 

close to the surface of the polished test plate.
 

The resulting focal volume contains three independent sets of virtual
 

fringe planes correspondingly perpendicular to the u, (a + x)/A-and 

(u - v)/J-velocity vectors. The geometry of the three beam pairs, and
 

actual photographs of the fringes formed by each beam pair, are shown in
 

Figure 11. By selectively blocking one of the three beams, any one of the
 

three velocity components can be examined without a change in the focal­

volume geometry. This method we consider superior to the more common one
 

of rotating a single beam pair in the desired orientation which, in our
 

experience, cannot easily be done with sufficient reproducibility and
 

without slight displacements of the focal volume.
 

C. Geometry of the Intersection Volume
 

The three intersecting beams, taken in pairs, define three planes,
 

along which the measurements were taken. Even though considerable care
 

was taken to orient these planes at 0 and ± 450 with respect to the wall, 

the small deviations that were measured were taken into account in the data 

analysis. 

The subtended angles between the beam pairs were measured by two 

different methods on two different occasions and found to be within - 0.3%
 

of the values:
 

1 u measurement} 0.02112 rad 

2 (11 + v) measurement = 0.01490 rad (27) 

3 1(L y) measurement} = 0.01424 rad. 

19
 



AEDC-TR-7949
 

93 /,,-2 define a nearly isosceles triangle as illustrated
Thus, 02 


in Figure 11.
 

As a consequence bf the requirement to isolate the traversing mechanism
 

from vibrations, the relative orientation between the hypotenuse of the
 

triangle and the wall (angle 0, Figure 12) bad to be determined by a separate
 

measurement for each'profile. This was accomplished by permanently mounting
 

a second razor blade to one side of the test plate with its edge aligned with
 

the surface of the plate. The relative orientation for the optics could then
 

be determined by measuring the offset between the two beams forming the triangle
 

is small in every case but must be accurately known
hypotenuse. This angle 0 

to estimate any quantities that involve v, the velocity component normal to 

the wall. 

Using the geometry as defined in Figure 12, we have from the law of
 

cosines, 

=22 + e2 2 
Cos Q 2@ 

2 2028 01 - 2 ,2 (28) 
0 ±0 0 

and 912 + 022 _ 32
 

cosy7 20912

21 2 3
 

Assuming now that the velocity vector in two dimensions can be defined
 

by its components in the three directions defined in Figure 12, we have
 

that the three measured components are given by
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b 2Vu11 b11u + 

u2 b21u + b22v (29) 

u3 = b3 1 u + b 3 2v 

where
 

= 

b = cosO b12 sin
 

b21 = cos(y + 0) b22 = sin(y + 0) (30)
 

= 

b31 = cos(y - 0) b32 -sin(P - 0) 

can be used to check the validity
Equations(29) form a redundant set, and 


of the data. In particular, since sin( + y) = since, we must have
 

(u3) siny . (31)(u1 ) sinc = <u2 > sinp + 


Recall from Equation (1) that 

2 sini/2 - i 
(32)
vD. x-u. ui , 

so that the consistency Equation (31) becomes
 

(33)

1DI= <VD2 > + (VD3

> 


can be solved in pairs to obtain two in-
Alternatively, Equations (29) 


dependent estimates of (u> and (v)at each location,
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(34)
x

b21b b21) \(vl>/ C(2.) 

and u,, II")(<ul'>
 
b31 b32/ \ 1vi <3/ 

Inverting Equations (34) and (35), we then have 

(u1) = (u1) sin(y + 0) - <u2) sino 

siny 
(36) 

(u2) cos(0) - (ul) cos(y + 0)
<V,> =siny
 

and 

(u,= sin(O - 0) + (u3) sin 

(uII) =sino 

(37)
 

l(1cos(P - 0) - (u3 "coso
 
(vii) =sinp 

The final values for (u) and (v> were then estimated by averaging the two
 

independent estimates,
 

(u> Y >+ <ujj>
 
( + ) (38) 

(v)= 7 vi> + (vII) 

Using Equations (29), we can also relate the mean-square fluctuations 

of the measured velocity components, to (u 2), v2 ) and (u'v'). In 
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particular, we have
 

(u )b (u ) + b12 ('v + 2 b1 1b1 2 (u'v')
 

2
 

1 1 1  


(u' = b212 u '2> + b22 2 W2 + 2 b2 1b2 2 (u'v') (39)
2 > 


2 2+ z > +z b u'
 

(u/32) = b3 1  (u'2 + b32 (v 2 b 31b32UV
 

Note that while Equations (29) are redundant, Equations (39) are not,
 

except for special choices of 0, y and 0. Inverting Equations (39),
 

we then have
 

(u'2> Cli (u',12) + C 12 (u'22) + C 13 Wu"32>
 

(v'2> = 021 u'12) + C22 (u/22> + G23 (u/32> (40) 

(u'v' G31 (u2 /32 + 33 (u'3
2 ,
+ C u22) 


where the C.. matrix is given by,

1J 

C1 1 = sin(P + y) sin(O - 0) sin(y + 0)/A 

C12 = -sinp sin(O - 0) sino/A 

C13 = siny sin(y + 0) sino/A 

C2 1 = -sin(O + y) cos(P - 0) cos(y ± 0)/A 

C22 = sine cos(P - 0) cos¢/A (41) 

C23 = siny cos(y + 0) coso/A 
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c31 -2al sin( + y) sin(P - y - 29)/L 

032 =Isinp sin(P - 20)/6
 

33 siny sin(
c33 =-2
i 

+ 20)/A
 

and where
 

A = sin -•siny - sin(P + y) (42) 

D. Receiving Optics 

The optical axis for the receiving optics is aligned at an angle-of 

7.5° with respect to the test-plate surface, thus permitting a full view
 

of the focal volume throughout the boundary layer. This inclination of
 

both the transmitting and the receiving optics with respect to the test
 

surface results in a reduction of the spanwise extent of the focal volume.
 

The collecting lenses consist of a pair of 15.24 cm diameter, f/5 achromats
 

which have been anti-reflection coated and are mounted back-to-back in a
 

common cell. This configuration provides a 1:1 imaging system that was
 

measured to be approximately twice diffraction limited. The collected
 

light cone is directed by a 10 cm diameter multi-layer dielectric coated
 

mirror into a 0.05 cm diameter pinhole which spatially filters the collected
 

light that is accepted by the photomultiplier assembly. The photomnutiplier
 

assembly consists of a focusing mount with a 20 mm focal length, f/5 coated
 

lens, a 30A wide 0.5145 jIm filter and magnetic lensing to restrict the photo­

cathode of an EMI 9813B photomultiplier tube. The photomultiplier tube output
 

is coupled directly to a low-noise fast rise-time preamplifier, constructed
 

inside the tube housing at the base of the photomultiplier tube. The photo­

detection system was designed with a frequency response in excess of 50 NHz.
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The effective focal-volume'diameter is defined,by the pinhole in the 

receiving optics and is therefore equal to 0.05 cm. 

Oscilloscope traces of raw signals from the output of the preamplifier
 

at the base of the photomultiplier are included in Figure 13. These photo­

graphs are multiple exposures taken of particle bursts at the highest
 

recorded velocities of e 2.2 (Re0e 4 x 104) at the edge of the boundary
 

layer. The frequency of the u-component signal is about 26 MHz. The fre­

quency of the (u+ 2)-component signal is almost exactly one-half the u­

component frequency. This feature, which will be discussed later, is exploited
 

by the processing scheme. Typical.§ignal-to-noise ratios of 15-20 db were
 

measured at these velocities.
 

V. Signal Processing and Data Acquisition
 

The output of the photomultiplier, coupled through the integral pre­

amplifier, was monitored on a HP 8553B/8552B wave analyzer which was also
 

used to align the optics and tune the entire system by maximizing the signal­

to-noise ratio of the Doppler signal. This signal was filtered by a two-pole
 

low-pass filter in order to eliminate the substantial shot noise above the
 

Doppler frequencies. The pedestal, resulting from the dual-'scatter optics',
 

is not removed by this processing scheme.
 

A. The LDV Processor
 

The filtered output signal is fed into the LDV processor (Dimotakis and
 

Lang (1977)) depicted in block diagram in Figure 14. The various components
 

of this processor are described in the following paragraphs.
 

1. The Analog Input Processor
 

The Analog Input Processor defines a reference level'V0 and two symmetric
 

levels V0 - VL' V0 + VL about V as shown in Figure 15a. In addition, a fourth
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level VM can also be defined which must be higher than V0 + VL. The
 

amplitudes Vo, VL and V., as well as the polarity, are independently
 

selectable. The filtered Analog INput (AlN) must cross V0 - VL from below
 

and then V 0 + VL from below, in that order, before the Digital INput (DIN)
 

is raised. A subsequent crossing of V0 from above will cause DIN to go low.
 

This test sequence must be passed by the analog input AIN on every cycle,
 

otherwise the burst is rejected, the logic is reset, and the processor waits
 

for the next burst. If the analog input AIN exceeds V at any time during
 

the burst, the burst is rejected, the logic is reset, and the processor waits
 

for the next burst (cf. Figure 15a). Thus the amplitudes Vo, VL and VM
 

specify the range of particle sizes accepted by the processor for the mea­

surement. The frequency of the signal DIN can be prescaled (cf. Figure 15b)
 

to produce the signal DIN' which has one negative slope for every m negative
 

slope of DIN. The constant m is front panel selectable and can be set to
 

1, 2, 4 or 8. The Analog Input Processor is designed with high-speed ECL
 

circuitry and stripline technology with a maximum Doppler frequency of 170 MHz.
 

2. The Digital Input Processor
 

The prescaled digital input DIN' is subsequently processed by the Digital
 

Input Processor. The negative slope of DIN' fires a resettable one-shot TI
 

of duration T., as illustrated in Figure 16. The negative slope of T fires
 

a resettable one-shot of duration T2 . The first negative slope of DIN' also
 

raises a signal G, which gates a 100 MHz crystal clock into the Flight Time
 

(FT) counter, as illustrated in Figure 17. The next negative slope of DIN',
 

refires the one-shot T1, resets the T2 one-shot and generates a short TRansfer
 

Pulse (TRP) which stores the FT buffer and increments the cycle counter (of.
 

Figures 16 and 17). If the T2 one-shot times out before it is reset, an error
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flag is raised, the logic is reset and the processor waits tor the next
 

burst. As a consequence, the logic checks that every period of the pre­

scaled digital input falls within predetermined limits. If T is the period
 

of the Doppler signal, we must have,, as a consequence,
 

T' < mT < Tl + T2 ' (43) 

where m = 1, 2, 4, 8. The time intervals TI and T2 are front panel selectable 

and cover the range 60 nsec < l T2 C 3 msec. The maximum Doppler frequency 

that can be handled by the Analog and Digital Processors working in tandem
 

is given by,
 

(v max(m) 8 -130 MHz (44)
nDmax min( 1) 60 X 10-9
 

3. The Timer 

The 100 MHz crystal clock is divided by 10 to form a 10 MHz time 

standard which is used as the clock for the timer, as illustrated in 

Figure 17. The timer, in turn, has a + 10 prescaler which sets the 

time base. This increments a free running 32-bit counter which can be
 

reset if required but is normally allowed to overflow. The gate signal
 

G is inverted to form 6 and is used to latch the contents of the timer
 

counter into the timer buffer, as illustrated in Figure 18. The purpose
 

of this information is to record the real time of each scattering event,
 

to permit the reconstruction of the velocity fluctuations in time (cf.
 

Dimotakis and Brown (1975)). 
 While the present data rate was often high
 

enough (- 50 klz) to warrant an examination of the velocity fluctuations
 

in time, it was decided not to fnclude such data in the present report.
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4. Performance and Operating Modes
 

The LDV processor operates at-the theoretical performance of ± 1/2
 

clock count (10 nec) in determining the flight time 
At. of the ith
 

scattering particle. The overall measurement accuracy is of course limited
 

by a variety of other factors such as optical precision, signal-to-noise
 

of the signal at the processor input, etc. In all the high-speed cases
 

(Me> 0.8), the finite frequency of the processor clock was the limiting
 

factor in the velocity measurement accuracy of a single particle. The
 

highest frequency that occurred was 27 MHz in the Me- 2.2 flow. This fre­

quency was measured with an overall accuracy for a single particle of - 2%. 

A histogram from a 1,024 particle record taken in the free stream (Me- 2.2) 

of the flight time for 8 Doppler cycles, is depicted in Figure 19. It can 

be seen that - 2/3 of all'the counts fall in one 10 nsec bin. At the lower 

velocities the limitations arose as a result of the combined effect of all 

the other sources of error. For the M 0.1 measurements an accuracy of
 

0.5% for a single particle was achieved. It should be emphasized that while
 

the accuracy for a single particle velocity measurement does not limit the
 

accuracy with which mean velocities can be determined, it contaminates the
 

measurement of the rms fluctuation levels.
 

The processor is capable of operating in a variety of modes. T-yo of
 

the modes that were used in this work will be discussed.
 

In the first mode, a fixed number of cycles is stored in the Mode Logic
 

circuitry and compared with the contents of the Cycle Counter after each TRP
 

pulse (cf. Figures 16 and 17). When the two numbers match, the Count End
 

(CEND) flag is raised which in turn lowers the GO disabling the system
 

(cf. Figures 17 and 15a). The output is then read and the processor is
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reset and waits for the next burst (dead time - 60 nsec). All the data 

for 4> 0.6 (JPL 20-inch Wind Tunnel) were recorded in this mode. Eight
 

cyclds were counted for the beam pair at 00 (u1 data) with the prescaler
 

m set to 2. Four cycles were counted for the ± 450 (u2, u3 data) beam
 

pairs with the prescaler set to unity. The advantage of this scheme was
 

that the digital processor saw the same frequencies and numbers of cycles
 

for all configurations. This occurs for the present measurements because
 

the projection of the velocity vector along the ± 450 directions is approxi­

mately given by
 

u uu
 
u2 u3 ' ___ ' ( 5 

2 32
 

and hence the resulting Doppler frequencies are given by
 

V 1DV (46)

DF -D 2 i'D
2 1
 

This uniformity in the processing, allows all the signals to be
 

processed with identical settings except for a change in the prescaler
 

from 1 to 2. The particle velocity is then determined by reading the
 

output of the FT counter which corresponds to the flight time of the
 

particle for the fixed number of fringes specified.
 

In the second mode, the processor requires that a fixed number of
 

cycles be reached or exceeded by the burst and records the flight time
 

and number of cycles of the entire burst. The sequence depicted in
 

Figure 15a represents such a mode where, assuming that each period of
 

DIN passed the TIl T2 test, the end of the burst was determined by the
 

Analog Input Processor. The flight time At that would have resulted from
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such a burst is indicated on the figure while the output of the cycle
 

counter would have been n = 3 (number of TRP pulses and also number of
 

fringe plane intervals). Both n and At would be recorded in this mode
 

and the velocity would be
 

= ns (47) 

u± At 

The data recorded at Me- 0.1 (GALCIT Merrill Wind Tunnel) were acquired
 

in this mode requiring at least four fringes for the ± 450 data (u2, u3)
 

and at least eight for the 00 data (ul)1 Thus, in both modes, the same
 

minimum number of fringes had to be crossed.
 

There are several important differences between thetwo modes.
 

First, using the facility of the processor to recognize the end of the
 

burst while retaining the previous valid measurement allows the total
 

flight time to be used, instead of an arbitrary fraction, in determining
 

the velocity component of interest. This improves the measurement accuracy
 

that are made in assigning
in an obvious way. Second, the phase errors 


equal phase to the crossings of the reference level VO by the signal are
 

Third, the sampling statistics
cancelled when the entire burst is used. 


In the first mode (fixed number of
are different between the two modes. 


fringes), all we know is that the particle crossed at least that many. In
 

the second mode (number of fringes unrestricted provided it exceeds a certain
 

minimum) we know that the particle crossed exactly that many. The sampling
 

as will be discussed in Section VI-B.
bias is different for these two cases, 


B. Output Formatting
 

The (i) flight time, (ii) total number of validated cycles and (iii)
 

the real time are encoded by the processor into, three 32-kit words as binary
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coded decimals (BDC). These data serve as input to the subsequent format­

ting electronics which selected the four least significant decades of the 

flight time to form a sixteen-bit word and, depending on the fringe mode, 

either the sixteen bits of the real time for the fixed-fringe mode, or the 

number of fringe crossings, in the free-fringe mode. These data were then 

combined to f6rm a single 32-bit word. 

The asynchronous data from the processor were recorded in dual 1024 X
 

32-bit buffers. One buffer was filled asynchronously with the processor
 

output while the second was clocked synchronously, as a sequence of 4 bits/
 

word ona Kennedy Model 9100 digital tape deck. Each 1024 X 32-bit buffer
 

constituted a 4K-bit record on tape. Several records were recorded at each
 

station depending on the turbulence level and average data rate.
 

VI. Data Processing
 

In computing the Reynolds stress -pu'v' from the measured velocity data,
 

it is necessary to estimate both the first and second moments of the data,
 

and to extract relatively small differences between two large numbers. This
 

necessitates a careful accounting of all random and systematic errors that
 

result from spurious measurements. In the present experiments, such errors
 

are caused by a finite signal-to-noise ratio,, and appear as isolated counts
 

when the measurements are treated in histogram form. Errors are also caused
 

by LDV sampling bias and by both the finite clock period and by noise in the
 

processing electronics and in the optics. Errors which arise as a result of
 

the finite measurement volume have been found to only be important in the
 

immediate vicinity of the wall, and have not been corrected in the present
 

analysis. The correction of such errors would result in a correction of at
 

most the -first two data points adjacent to the wall, for which we have the
 

least confidence, and would not affect the conclusions presented.
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A. Histogram Pruning
 

The data from the present experiments were recorded as multiple records
 

of 1024 individual realizations of the three instantaneous velocity com­

ponents u, 11 + v, u - v. These data were processed by forming a separate
 

histogram for each record, and subsequently performing the statistical
 

computations 	using the resulting histograms. For the high-speed flow experi­

ments, the 	data were recorded in the fixed-fringe mode and the histograms
 

were formed 	as a function of the integer flight time At.. The low-speed
 

measurements were recorded in the free-fringe mode for which the flight
 

time was large and covered a much wider range. For these data, the histogram
 

was formed 	as a function of the velocity of the particles, computed as an
 

integer percentage of the maximum velocity that the processor would admit,
 

i.e.,
 

I = 100 T1 	ni (48). 

At. 

where '1I is the minimum Doppler period and n. is the number of fringes
 

th
 
crossed by the i particle in time At..
 

The pruning was performed in two passes. First, data in any bin that
 

contained only one count, and did not have neighboring bins with more than
 

one count, were discarded. In the second pass, any data isolated from the
 

main body of the histogram by at least one zero were also discarded. If,
 

as a result of these two operations, more than 24 measurements out of the
 

total of 1024 were rejected, the entire record was rejected. This scheme
 

was preferred to the more usual one of rejecting data outside a certain
 

number of standard deviations from the mean. By way of example, the few
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counts in bin 40 of the histogram in Figure 19 would be discarded by this 

scheme.
 

The histograms which result from the data in the present investigations
 

are illustrated in Figures 20 and 21. In these figures, the histograms at
 

several locations through the boundary layer are superimposed on the mean­

velocity profiles for that case. For both flows represented here, the
 

histogram for the free-stream flow encompasses only four bins. Near the
 

wall, the histogram is spread over more than forty bins.
 

B. Sampling Bias
 

The complexity of processing single particle laser-Doppler velocity
 

data is compounded by the fact that the fluid velocity is sampled in a
 

biased manner. This problem, first pointed out by McLaughlin and Tiederman
 

(1973), is a consequence of the fact that the particle flux through the
 

measurement volume, and the resulting measurement probability per unit time,
 

is higher when the local fluid velocity is high than when it is low. The
 

fact that the measurement probability is a function of the measured quantity
 

gives rise to the sampling bias (u), where u is the three-dimensional velocity
 

vector. Consequently, to compute the expectation value of a particular
 

function of the measurements we must remove this bias, i.e.,
 

)> f(Ri)p-1 (i 

(f(1!)) 0 1 (49) 

i 

The dependence of the sampling bias function 0 on-the local velocity vector
 

u, on the shape of the measurement volume, and on the minimum number of
 

fringe crossings required by the processing electronics, has been derived
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by Dimotakis (1976). For data recorded in the fixed-fringe mode, if the
 

angle between the intersecting beams is small, the expression for 5(u)
 

simplifies to
 

1/2
 

uHl +u,,/u±2) [I - G2(I + u,,/u)] , (50)
 

where uI is the velocity component perpendicular to the fringe planes,
 

u, is the velocity component parallel to the fringe planes and perpen­

dicular to the beam bisector, and e is the ratio n ,i/nT of the minimum
 

number of fringe crossings required by the processor to the total numbe
 

in the focal volume. Note that recording the flight time for a fixed
 

number of fringes in fact requires that at least that many were crossed.
 

Consequently, the fixed number of fringes is equal to n . in the context
 
min
 

in which e was defined for Equation (50).
 

Evaluating S(u;e) for the uI data in the boundary layer, which were
 

acquired using the fixed-fringe mode (0.6 < <
 
e 2.2), we note that 

u2 /u = v2/u2 << I so that, in this case, 

(u;c) u.(l - 2 ) (51) 

or,
 

P(sc) =u1 (52) 

In going from Equation (51) to Equation (52), an additional assump­

tion has been made. Even though nmin is fixed by the signal processing
 

electronics, the total number of fringes crossed, n is unfortunately a
 

complicated function of the particle size. This is a consequence of the
 

fact that the amplitude levels V0 And VL are absolute. A large particle,
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with a correspondingly large scattering cross-section, will yield a burst
 

which is expected to result in more validated cycles. Thus, the ratio e
 

is a function of the particle size. In the context of Equation (49), the
 

transition from Equation (51) to (52) is valid only if the local velocity
 

vector is uncorrelated with particle size. This requirement will be satisfied
 

if the particles track the flow.
 

With this proviso we then have from Equations (49) and (52), for the
 

u data in the fixed-fringe mode,
 

E f(Ili) u JiI 

)= -i (53) 

i 

In particular, the mean velocity is given by
 

(u V (54) 

i 

where N is the total number of data points, as originally proposed by
 

McLaughlin and Tiederman (1973). Similarly the mean square is given
 

by, u ji 

2= i (55)(55) 
(u, ) 1 

The mean-square fluctuations can then be computed by means of
 

2
(u 2) = (u1
2) - (u1> (56) 
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> (u1 i - (u))2 U±-1 

(u/'2 i (57) 

The latter form is preferable in avoiding finite precision problems in
 

the computer, at the expense, however, of substantially more computing
 

time.
 

In evaluating Equations (54) and (55), note that the ith measured
 

velocity component is given by Equation (47), or
 

u1i T_ " (58)

k+L+ x
 
S2
 

where n is equal to the number of fringes, s is the fringe spacing, Tc is
 

the clock period (10 nsec), k. is the (integer) output of the flight time
1 

counter and x is a random variable representing the collective uncertainty 

in the determination of the flight time At and resulting from (i) the 

finite clock period T' , and (ii) the uncertainty with which the equalc 

phase points are determined by the comparators from the signal burst as
 

a result of finite signal-to-noise ratio. The 1/2 is added to ki to remove
 

the systematic truncation error of the digital counter.
 

Using Equations (54) and (55) and correcting for the finite variance
 

of the random variable x, we have
 

(uJ-i /'n N (59)
 

and 2 

(u_2fixed ( ; (60) 
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where
 

J_= (k. +21) (61) 

and 

2 f x2p(x)dx

2 xp(x)dx (62)


J p(x)dx 

is the variance of x.
 

Unfortunately, the situation is less well defined for the ±'45 data
 

recorded in the fixed-fringe mode. In that case, the two relevant veloci­

ties, u1 and u,, are of the same order of magnitude. Nevertheless, since
 

only one velocity component was measured at a time, we use Equation (52)
 

for the bias and'reduce the ± 450 data using Equations (59) and (60). While
 

this is clearly not correct, it is better than ignoring the bias altogether.
 

Note that the expression for the sampling bias P given by Equation (52)
 

is not appropriate for data acquired in the free-fringe mode because this
 

equation was derived using the assumption that the probability of measure­

ment is determined by the fact that the particle has crossed at least the
 

fixed number of fringes. In the free-fringe mode, the measurement of the
 

number of fringes crossed and of the flight time in units of T corresponds
c 

to a particle crossing of exactly ni fringes. The probability for this event 

can be determined from Equation (50). Since P (u; ni/nT) is proportional to 

the probability of crossing at Least n. fringes, i.e., 

%fixed (u;ni/nT) a In < niA (63) 
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we have that 

[n = nil pn < n-1 2 - (n < (n, + 1)I , (64) 

where p f ) denotes the probability per unit time of observing the 

in the braces. Consequently, 

event 

Pfree(j;ni/nT) fixed(;n/nT) - fixed u;(ni + 1)/nT] , (65) 

fre (nfn ) 

-2 2 2 3/2 
u 1-2(u1 2 + u, ) (ni + 1/2) (66) 

where, in the context of Equation (49), the assumption has been made that 

the particle size is uncorrelated with the local velocity. In the context 

of Equation (49), note that 

n. 
t (67) 

whereas 

(u2 2+ u'2) =At. (68) 

where Ati is the time of flight for the measured ni fringes. 

these equations in Equation (66), we have 

1 (u . n(k i + 1/2 
+ x)ni(

2 

0free (;ni- j. T n . + 1/2 

Substituting 

(69) 

where, as before, k i is the integer output of the flight time counter and 

x is a randomvariable-representing the uncertainty in the measurement of 
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the flight time. Using this bias function, we thus have
 

u±)free= (,ns) K0? 3 (70)KI ,2 

and
 

2
f nj (x 1 4 K a K3,4 (71) 

S1,2
 

where 

m
 
n.
 

K, m_ 1 (72) 
3 (ki 2) (ni + 

and a2 is the variance of x. Note that Equations (70) and (71) are equally
 

valid for the 00 data as for the ± 450 data. The data recorded at Me= 0.1
 

in the free-fringe mode were analyzed using Equations (70) and (71). In
 

order to compare them to the previous data, Equations (54) and (55) were
 

also used, which in this case reduce to
 

=(t-) (73)s 

and 

(u2 L-1 \ (74) 

where
 
n.
 

Lm =I(75)
i (ki +- ) 
i 2 
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Note also that Equation (69) for the sampling bias in the free-fringe
 

mode is in disagreement with the results of Hoesel and Rodi (1977) and
 
-i
 

Ati (k 1)
Buchhave, George and Lumley (1979), who claim that 0r 

free i i2~ 

If that were true, Equations (59) and (60) would be valid for the free­

fringe mode as well, with the three summations as defined in Equation (61). 
2 

The variance a of x was estimated from the mean-square fluctuations 

in the free stream where (u2> - 0. 

The results of this analysis have been applied to the data obtained 

in these experiments. The bias correction is most important in the region 

near the wall, where the fluctuation levels are highest. These calculations 

indicate at most a 2% correction for the low-speed flow data in this region, 

and a 3.3% correction for the high-speed flow data. 

VII. Results and Discussion
 

A. Data -Reduction
 

Following the computation of the proper statistical averages, the data
 

were reduced to a form appropriate'for boundary layer flows by utilizing the
 

scheme outlined in Part I of this report by Collins, Coles and Hicks (1978).
 

For this purpose, the Van Driest "(1955) scaled mean streanwise velocity data
 

were fitted to the law of the wall and the law of the wake using a three­

parameter nonlinear least-squares fit with a single constraint equation based
 

on the local friction law. The profile parameters u T, fl and 6, determined
 

by this analysis, were then used to infer both the distribution of shear stress,
 

and of the normal velocity, from the data by an integration of the equations
 

for the conservation of mass and momentum from the wall to the free stream,
 

using the formulation by Spalding (1961) to describe the flow in the viscous
 

sublayer. The details of these computations are given in Part I.
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One significant difference between the present LDV data and the data
 

obtained using standard Pitot instrumentation (cf. Part I) is the ability
 

of the Pitot to obtain valid data in the region adjacent to the wall.
 

Because of noise considerations, the present data are limited to a distance
 

of approximately one focal-volume diameter from the wall. This fact requires
 

that the boundary-layer scale parameters 6* and 8 be computed directly from
 

the law of the wall and the law of the wake representations rather than from
 

a direct integration of the data, as in the results discussed in Part I.
 

The scale parameters are defined as
 

[-=f dy, (76) 

0 Pee 

and
 
8 1I -uu dy (77)


0 PeUe e 

In terms of the Van Driest (1955) scaled velocity U,
 

pu 1 Te sinU (78)
 

Peue m TV 2U
cos


and
 

pu 2 I e s in2U(9 T .2
-- 2 -2 __2 (79) 

pu 2 m T cos2U 

where 1/2 

m (T-T) , (SO) 

and U is defined by the Van Driest scaling
 

m U sinU (81)u e 
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Thus,
 

S1 Te sinU dy (82) 
w 0 Cos U 

and 

Te f6 dy 1 
sn 2 d (83)

2 dy 2dy2 
w o CosmU - osUu 

The integrals involved in these expressions were evaluated in terms
 

of the integrals P and Q defined in Part I. These integrals are functions
 

only of the mean-velocity profile parameters u, and 6, and are evaluated
 

in terms of the Spalding formulation for the boundary layer.
 

As a result of the differences in the computational procedure for the
 

scale parameters 6* and 0, these quantities differ slightly from those
 

computed for the identical flows given in Part I of this work. Corrections
 

for these discrepancies have been included where comparisons are made to
 

the previous work.
 

B. Streamwise Mean-Velocity Profiles
 

A comparison between the mean-velocity profiles obtained in the present
 

experiments and those obtained from the Pitot data of Part I is given in
 

Figures 22 and 23. In order to make a consistent comparison, the Pitot data
 

from Part I have been replotted using the integral scale 6 obtained from the
 

LDV experiments. At high Mach numbers, the results exhibit a small discrep­

ancy between the LDV and the Pitot data, with the LDV data exhibiting lower
 

mean velocities near the wall. The cause of this discrepancy is not clear
 

at this writing, nor is it clear which measurement is the more reliable.
 

The low-speed flow mean-velocity profiles have been computed using both the
 

exact bias correction, according to Equation (70) and using the harmonic
 

mean according to Equation (59). The differences are small as are the
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differences between these results and the results of the mean value of
 

these data without any bias correction. The comparisons have not been
 

plotted here. The agreement between the LDV data and the Pitot data is
 

excellent for the low-speed results.
 

The data obtained from the present experiments have been plotted
 

in coordinates appropriate to the law of the wall in Figures 24 and 25.
 

/
The solid line associated with each data set has been computed using the
 

formulation by Spalding (1961), and illustrates the fit obtained in the
 

computation of uT., H and 6. The high-speed flow results shown in these
 

figures illustrate the problem of obtaining measurements near the wall.
 

These data exhibit a departure from the computed profile because of noise
 

which occurs when the focal volume intercepts the wall. This fact required
 

that the data included in the least-squares fit be limited to y+ 200 for
 

these data, as was the case for the Pitot data reported in Part I.
 

The profile parameters uT and 6 computed from the least-squares
 

procedure agree closely with those parameters computed from the Pitot data
 

for the same flows. The computations of the wake parameter 11,however, are
 

considerably higher in every case. The self-consistency of the LDV results
 

indicates that this discrepancy is probably not the consequence of data
 

reduction errors.
 

C. Streamwise Velocity Fluctuations
 

The fluctuations of the streamwise velocity component, normalized by
 

the free-stream velocity, are shown in Figures 26 and 27 as a function of
 

the normal coordinate. These results are compared to the distribution of
 

the u' fluctuations obtained at low speeds by Klebanoff (1954) in flow at
 

constant pressure, represented by the solid squares in these figures. For
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these comparisons, the normal coordinate for the data by Klebanoff have
 

been scaled with the boundary-layer scale obtained in the present experi­

ments.
 

The error bars in each of the subsequent figures have been computed
 

as the standard deviation of the ensemble of records used in computing
 

the mean values. In each case, a few data points for which the error
 

bars exceed the mean value have been excluded. From these results, it
 

is clear that, near the free-stream, the velocity fluctuations are properly
 

computed from the LDV data. As the wall is approached, the deviations
 

between the present results and those of Kelbanoff are within the confidence
 

limits in the present data.
 

It can be concluded from these data that, within the error in the
 

present experiments, no measurable effects of compressibility have been
 

found on the mean-square velocity fluctuations. The data for Mach numbers
 

up to 2.2 are adequately represented by the data of Klebanoff. The differences
 

exhibited in these figures between the high-speed flow data and the low-speed
 

flow data arise from the differences in the boundary-layer Reynolds number,
 

Re These results confirm Morkovin's (1961) hypothesis that there is no
 

essential difference in the dynamic behavior of the boundary layer at constant
 

pressure for Mach numbers up to 4 or 5.
 

D. Reynolds Stress Profiles
 

The distribution of Reynolds stress, computed as -pu v , is shown in
 

Figures 28 and 29 for the data of these experiments. In order to compare
 

the Reynolds stress deduced from the experimental data with the &xpected
 

distribution through the boundary layer, a second computation based on the
 

integral formulation outlined in Part I is displayed as the solid curve in
 

each figure. The results from the integral formulation coincide with the
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results obtained using the Pitot data, with minor differences arising
 

from the difference in the computed value of the wake parameter fl.
 

For comparison with the expected behavior at low speeds, the data
 

of Klebanoff (1954) has been included in these figures- as the dark squares
 

on each figure. The agreement between the integral formulation and the
 

data of Klebanoff indicates that the integral formulation, based on the
 

mean-velocity data, yields the expected distribution for the total shear
 

stress.
 

The dominant feature of the results for the distribution of the
 

Reynolds stress, as measured by the laser-Doppler technique, is the de­

parture of the measured Reynolds stress from the results of the integral
 

computation in the region y/G 3. This departure represents a major error
 

in these measurements and may indicate a fundamental limitation on the
 

applicability of the laser-Doppler technique in flows of this type.
 

Several conclusions can be reached from these data. The anomaly
 

represented by the departure of the Reynolds stress from the expected value
 

near the wall has been reported previously by Johnson and Rose (1973), by
 

Yanta and Lee (1974), and by Abbiss (1976). An explanation of this phe­

nomenon by Sandborn (1974) assumed that the phenomenon is related to the
 

contributions of density fluctuations to the Reynolds stress. That this
 

assumption is incorrect is clear from the present data. The observed phe­

nomenon is not Mach number dependent and hence is not an effect of com­

pressibility. These data also indicate that the discrepancy in the Reynolds
 

stress is not associated with particle lag at the position of measurement,
 

because for this to be the case the results of Equation (13) require that
 

the lag occur at increasing distances from the wall with increasing free­

stream velocity. In addition, the agreement obtained in the distribution
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of the mean-square velocity fluctuations indicates that the particles
 

follow the flow locally throughout the boundary layer.
 

Similar distributions for the Reynolds stress, measured using hot­

wire anemometer techniques by Laderman (1978), have recently been shown
 

to agree with the present results given by the integral distributions
 

shown by the solid curves in Figures 28 and 29.
 

These results again confirm Morkovin's hypothesis (1961) and refute
 

the hypothesis by Sandborn (1974) that density fluctuations may be re­

sponsible for major changes in the distribution of Reynolds stress at
 

high speeds. Similar conclusions were expressed in Part I, based on
 

the results of the Pitot measurements of the mean-velocity profiles.
 

E. The Problem of the Normal Velocity
 

The results for the distribution of normal velocity are illustrated
 

in Figure'30 for the high-speed flow at low Reynolds number. In this
 

figure, the solid line is the result for the correct distribution of
 

v/u, computed from the integral representation of the data outlined by
 

Collins, Coles and Hicks (1978), using the boundary-layer parameters uT,
 

IIand 6 derived from the least-squares analysis.
 

The errors in estimating the normal velocity from the present data
 

are substantial in every case. The principal feature of the data is that
 

the normal velocity is large and negative at the wall, increasing sharply
 

in magnitude as the wall is approached. The disparity between the large
 

negative value and the error bars indicates that the particles are being
 

convected toward the wall in this region. In the free stream, the velocity
 

is positive in most cases, but with a magnitude that is larger than the
 

correct free-stream value as represented by the integral formulation.
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These data illustrate the difficulty in accurately representing
 

the normal velocity. This difficulty arises as a consequence of the
 

fact that any small misalignment of the optics will result in substantial
 

errors in the computed value of the normal velocity, which has a maximum
 

value
 

IGf
 

(84)
(v/u)$37- , 

where H = 6*/0 is the boundary layer form parameter. In addition, because
 

of the non-uniform particle distributions, the normal velocity components
 

of both the flow near the wall and the flow in the vicinity of the boundary­

layer 	edge are improperly represented.
 

The fluctuations in the normal velocity are represented for these same
 

data in Figure 31. These data have approximately the value of the data of
 

Klebanoff (1954) for incompressible flow, represented by the solid squares
 

in the figure. However, in light of the difficulties in measuring the
 

normal velocity, this agreement is fortuitous. The magnitude of the error
 

bars for these data are approximately one-half of the magnitude of the data,
 

and indicate a low degree of confidence in the results.
 

VIII. 	Conclusions
 

,The present experiments lead to a number of conclusions regarding the
 

applicability of the laser-Doppler technique to the study of boundary-layer
 

flows. The results presented for the behavior of the streawise velocity
 

components indicate the importance of including in the analysis of the raw
 

data 	an adequate technique for pruning the initial histograms in order to
 

remove errors in the data introduced by noise. These results further indicate
 

the importance of including proper statistical averaging in the analysis in
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order to account for the bias introduced by sampling. In addition, the
 

effects of a finite clock period and noise have been shown to be important
 

in the proper determination of the streamwise velocity fluctuations, u'
 

near the boundary-layer edge. When these effects are properly included­

in the data analysis, a direct comparison between the present laser-Doppler
 

measurements and measurements in the same flows, presented in Part I of
 

this work, indicates good agreement for the streanwise velocity components
 

u and ul. The present results, when properly scaled to account for com­

pressibility using the ideas of Van Driest (1955), are also shown to agree
 

with the low-speed data presented by Klebanoff (1954). This observation
 

further corroborates the conclusions expressed in Part I of this work
 

regarding the proper role of compressibility in determining the behavior
 

of the mean velocity, and confirms Morkovin's hypothesis (1961) regarding
 

the role of density fluctuations in the boundary layer at constant pressure.
 

The present measurements of the Reynolds stress, -pu'v 1, and for the 

normal velocity, v, are in substantial disagreement with the expected results 

derived from the mean flow. These observations seem to indicate a funda­

mental difficulty with the application of the laser-Doppler technique as 

implemented in these experiments to the measurement of the detailed structure 

of flows in the vicinity of a wall. The measured Reynolds stress profiles, 

-pu v , deviate from the expected behavior for y/e 3, indicating an error 

in the measurement for the u Iv' correlation in the region adjacent to the 

wall. This error arises because of the strong correlation between the normal
 

velocity component and the particle number density that occurs as a result
 

of the depletion of particles near the wall. These results indicate that
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the flow inside the viscous sublayer is such that a particle that enters 

the sublayer has a very low probability of leaving. The scaling law for 

particle behavior in a turbulent boundary layer (cf..Equation (13)) is not 

applicable in the viscous sublayer. A particle which enters the viscous 

sublayer is.subjected to the very high Lagrangian-frequencies which occur 

in the motion of the longitudinal vorticies, whose transverse extent is 

approximately 3O , and lag the flow in this region. As a consequence,u 

a fluid element coming from the wall is less likely to carry particles than 

a fluid element moving toward the wall. This results in an under­

representation of the positive component of the normal velocity, v, in 

the region near the wall, resulting in a negative value for the measured
 

component normal to the wall.
 

This under-representation of the motion near the wall also results
 

in a lower measured value for the Reynolds stress, -pu v, than would be
 

expected by an analysis based on the mean flow as described in Part I, since
 

the upswelling of fluid from the wall is associated with a lower streanwise
 

velocity. This bursting motion has been observed by Blackwelder and Kaplan
 

(1976) to be intermittent and quite violent, and is held to be responsible
 

for a large fraction of the total stress near the wall ($ 100). The 

particle transport to the wall via the viscous sublayer is so effective,
 

even at the lower velocities of the Merrill wind tunnel experiments, that
 

the wall appears as an infinite sink for particles.
 

We conclude from these observations that the measured disparity between
 

the Reynolds stress, -pu 'v/, and the total stress, as defined by the inte­

gration of the mean flow, arise not as a consequence of compressibility,
 

as suggested by Sandborn (1974), but as a consequence of particle depletion
 

which is unique to boundary layers in air. This is a fundamental limitation
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of the techniques for particle seeding which must be solved if this
 

technique is to be useful for deiailed measurements near the wall.
 

For free-shear flows, because of the absence of .the wall, this problem
 

does not arise, and the laser-Doppler technique will give an accurate
 

representation of the mean and fluctuating velocity components and their
 

correlations.
 

50
 



AEDC-TR-79-49 

References
 

1. Abbiss, 	J. B. 1976 Development of photon correlation anemometry for
 

application to supersonic flow. AGARD CP-193, "Applications
 

of N6n-Intrusive Instrumentation in Fluid Flow Research,"
 

11.1 - 11.11.
 

2. 	Blackwelder, R. F. and Kaplan, R. E. 1976 On the wall structure of the
 

turbulent boundary layer. J. Fluid &ech. 76, 89-112.
 

3. 	Buchhave, P., George, V. K, Lumley, J. L. 1979 The measurement of
 

turbulence with the laser-Doppler anemometer. Ann. Rev. Fluid
 

Mech. 11, 443-503, 1979.
 

4. 	Born, M. and Wolf, E. 1975 Principles of optics. Pergamon Press, New
 

York, p. 633 ff.
 

5. Cantwell, 	B. 1978 Private communication.
 

6. Coles, 	D. E. 1968 The young person's guide to the data. Proc. 1968
 

AFOSR-IFP-Stanford Conf., "Computation of Turbulent Boundary
 

Layers," Vol. II (D. Coles and E. Hirst, eds.), 1-45.
 

7. 	Collins, D. J., Colas, D. E. and Hicks, J. W. 1978 Measurements in the
 

turbulent boundary layer at constant pressure in subsonic and
 

supersonic flow. Part I. Mean flow. AEDC-TR-78-21.
 

8. Dimotakis, P. E. 1976 Single scattering particle laser-Doppler measure­

ments of turbulence. 'AGARD CP-193, "Applications of Non-Intrusive
 

Instrumentation in Fluid Flow Research," 10.1 - 10.14.
 

9. 	Dimotakis, P. E. and Brown, G. L. 1975 Large structure dynamics and
 

entrainment in the mixing layer at high Reynolds number. Project
 

Squid Tech. Rept. CIT-7-PU.
 

10. 	 Dimotakis, P. E. and Lang,.D. B. 1977 Signal responsive burst period
 

timer and counter for laser-Doppler velocimetry and the like.
 

U.S. Patent 	4,051,433 (September 27, 1977).
 

51
 



AEDC-TR-79-
49 

11. 	 Roesel, W. and Rodi, W. 1977 New biasing elimination method for laser-


Doppler velocimeter counter processing. Rev. Sci. Instrum. 48(7),
 

910-919.
 

12. 	 Johnson, D. A. and Rose, W. C. 1973 Measurement of turbulence transport
 

properties in a supersonic boundary-layer flow using laser velocimeter
 

and hot-wire anemometer techniques. AIAA Paper 73-1045; see also
 

AIAA J. 13, 512-515, 1975.
 

13. 	 von Kdrmdn, T. 1930 Mechanisehe abnlichkeit und turbulenz. Proceedings
 

3rd International Congress for Applied Mechanics, Vol. 1, pp. 85-92.
 

14. 	 Klebanoff, P. S. 1954 Characteristics of turbulence in a boundary layer
 

with zero pressure gradient. NACA TN 3178; also TR 124T, 1955.
 

15. Laderman, A. J. 1978 Effects of Mach number and heat transfer on Reynolds
 

shear stresses in compressible boundary layers. Aeronutronic
 

Publication No. U-6412.
 

16. McLaughlin, D. K. and Tiederman, W. G. 1973 Biasing correction for indi­

vidual realization of laser anemometer measurements in turbulent
 

flows. Phys. Fluids 16, 2082-2088.
 

17. 	 Morkovin, M. V. 1961 Effects of compressibility on turbulent flows.
 

Proc. Colloq. Mechanique de la Turbulence, CNRS (1962), 367-380,
 

(Proc. reprinted as Mechanics of Turbulence, Gordon & Breach 1964).
 

18. Perry, 	A. E. and Abell, C. J. 1975 Scalings laws for pipe flow turbulence.
 

J. Fluid Mech. 67, 257-271.
 

19. 	 Perry, A. E. and Abell, C. J. 1977 Asymptotic similarity of turbulence
 

structures in smooth- and rough-walled pipes. J. Fluid Mech. 79(4),
 

785-799.
 

20. Prandtl, L. 1942 Z. Angew. Math. Mech. 22, 241-243, 1942.
 

52
 



AEDC-TR-79-49
 

21. 	Sandborn, V. A. 1974 A review of turbulence measurements in compressible
 

flowo NASA TM X-62337.
 

22. 	 Spalding, D. B. 1961 A single formula for the "law of the wall". Trans.
 

ASNE 28E (J. Appl.'Mech.), 455-457.
 

23, 	Van Driest, E. R. 1955 The turbulent boundary layer with variable Prandtl
 

number. "5 0 Jahre Grenzschichtforschung" (H. Gbrtler and W. Tollmien,
 

eds.), Vieweg, Braunschweig, 257-271; see also The problem of
 

aerodynamic heating, Aeron. Eng. Rev., Oct. 1956, 26-41.
 

24. 	Yanta, W. J. and Lee, R. E. 1974 Determination of turbulence transport
 

properties with laser-Doppler velocimeter and conventional time­

averaged mean flow measurements at Mach 3. AIAA Paper 74-575;
 

see also AIAA J. 14, 725-729, 1976.
 

53
 



PRECEDING fMC fl I N FR 4E5 AEDC-TR-79-49 

100.0
 

70.0­

40.0­

0 

20.0­

0 

10.0 	 ­
Z"7. - 0
 

o4.0 	 0 

2.0 

1.0 ­

0.5 	 I I 

30 40 70 100 200 400 700 1000 

U (m/sec) 
Figure 1. 	 The Doppler frequency as a function
 

of flow velocity.
 

55
 



AEDC-T R-79-49 

40
 

20 1 - Dc I
 

200
 

I00
 
100 

Ie 
Nf7 	 0 

0* 

4 

/,
 

//
 

I 	 I 

0.03 0.08 0.1 0.2 0.4 0.7 1.0 

2w. (mm) 
Figure 2. 	The number of fringes in the focal volume as a
 

function of the focal volume diameter.
 

56
 



AEDC-TH-79-49 

10.0 

1.0
 

0.1
 

0.I1
 

0 .1l 	 I I ii I I II
 

0.1 	 1.0 10.0 
dp(Gm) 

Figure 3. 	The particle response time as a function of particle
 
diameter for di-butyl phthalate particles in air.
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Figure 4. The structure of the turbulent boundary layer as 
visualized
 
by the use of aluminum flakes in water; photograph courtesy
 
of Brian Cantwell, Caltech (1978).
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the boundary-layer thickness in wall coordinates
 

as a function of Re6 .
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 Optical geometry and fringe patterns for laser-Doppler anemometer.
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Figure 12. The optical geometry relative to the wall.
 



AEDC-TR-79-49 

u- Component LDA Signal 

(u + v) - Component LDA Signal 

Figure 13. 	 Laser-Doppler anemometer signals at the outer edge of a 

turbulent boundary layer, M = 2.2, Re0 = 40,000. 
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Figure 25. Mean velocity profiles with Van Driest scaling, 
Re, = 40,000. 
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Figure 26. The streamwise velocity fluctuations, 
Rae = 23,000. 
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Figure 27. 	 The streamwise velocity fluctuations,
 
Ree = 40,000.
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Figure 28. 	 The distribution of Reynolds stress,
 

Re, = 23,000.
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Figure 29. 	 The distribution of Reynolds stress,
 

Reo = 40,000.
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AEDC-TR79-49 

Nomenclature 

Symbol Equation Meaning 

c (22) constant in wall law (5.0) 

Cf (84) local friction coefficient 

d (7) particle diameter 
p 

k. integer output of the flight time 
counter 

n (21) particle number density 

n. number of observations with velocity ui 

Re6 Reynolds number based on 6-' 

s (2) fringe spacing 

u, v streamise and normal velocity components 
th ,ieto 

u (29) velocity component in t dirction 

U (18) friction velocity 

U (1) velocity component normal to the 
fringe plane 

u velocity component parallel to the 
fringe plane 

x, y streamwise and normal coordinates 

V, P, y, Figure 12 angles defined by the beam planes 

P(u) (49) bias function 

6 (26) boundary-layer thickness 

0 (77) boundary-layer momentum thickness 

6. Figure 12 beam separation angles 

(22) KLrman constant (0.41) 

laser wave length (0.5145 pm) 

pviscosity 

kinematic viscosity 
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AEDC-TR-79-49 

Nomenclature (Cont.) 

Symbol Equation Meaning 

VD (1) Doppler frequency 

11 (22) strength of the wake component 

Tc (5) processor clock period 

T (8) particle response time 

T shear stress at the wall 
w 

Subscripts 

( )e edge or external value 

)f pertaining to the fluid 

,( )p pertaining to the particles 

( )w wall value 

( ),' rms fluctuations 

Superscripts 

(+ value made dimensionless with u, V 
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